Probing Mixed-Genotype Infections II: High Multiplicity in Natural Infections of the Trypanosomatid, Crithidia bombi, in Its Host, Bombus spp
نویسندگان
چکیده
Mixed-genotype infections have major consequences for many essential elements of host-parasite interactions. With genetic exchange between co-infecting parasite genotypes increased diversity among parasite offspring and the emergence of novel genotypes from infected hosts is possible. We here investigated mixed- genotype infections using the host, Bombus spp. and its trypanosome parasite Crithidia bombi as our study case. The natural infections of C. bombi were genotyped with a novel method for a representative sample of workers and spring queens in Switzerland. We found that around 60% of all infected hosts showed mixed-genotype infections with an average of 2.47±0.22 (S.E.) and 3.65±1.02 genotypes per worker or queen, respectively. Queens, however, harboured up to 29 different genotypes. Based on the genotypes of co-infecting strains, these could be putatively assigned to either 'primary' and 'derived' genotypes - the latter resulting from genetic exchange among the primary genotypes. High genetic relatedness among co-infecting derived but not primary genotypes supported this scenario. Co-infection in queens seems to be a major driver for the diversity of genotypes circulating in host populations.
منابع مشابه
Probing Mixed-Genotype Infections I: Extraction and Cloning of Infections from Hosts of the Trypanosomatid Crithidia bombi
We here present an efficient, precise and reliable method to isolate and cultivate healthy and viable single Crithidia bombi cells from bumblebee faeces using flow cytometry. We report a precision of >99% in obtaining single trypanosomatid cells for further culture and analysis ("cloning"). In the study, we have investigated the use of different liquid media to cultivate C. bombi and present an...
متن کاملThe Genotypic Structure of a Multi-Host Bumblebee Parasite Suggests a Role for Ecological Niche Overlap
The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasit...
متن کاملSeasonal variability of prevalence and occurrence of multiple infections shape the population structure of Crithidia bombi, an intestinal parasite of bumblebees (Bombus spp.)
Ergonomic growth phases of annual social insect societies strongly influence horizontally transmitted parasites. Herein, we focused on the impact of temporal changes in host demography on the population structure of a horizontally transmitted parasite. Seasonal fluctuations in prevalence and the occurrence of multiple infections of the gut parasite Crithidia bombi were analyzed in repeatedly sa...
متن کاملInfection with the trypanosome Crithidia bombi and expression of immune-related genes in the bumblebee Bombus terrestris.
Social bees and other insects are frequently parasitized by a large range of different microorganisms. Among these is Crithidia bombi (Kinetoplastida: Trypanosomatidae), a common gut parasite of bumblebees, Bombus spp. (Insecta: Apidae). Bumblebees are important pollinators in commercial and natural environments. There are clear detrimental effects of C. bombi infections on the fitness of bumbl...
متن کاملSex, horizontal transmission, and multiple hosts prevent local adaptation of Crithidia bombi, a parasite of bumblebees (Bombus spp.)
Local adaptation within host-parasite systems can evolve by several non-exclusive drivers (e.g., host species-genetic adaptation; ecological conditions-ecological adaptation, and time-temporal adaptation). Social insects, especially bumblebees, with an annual colony life history not only provide an ideal system to test parasite transmission within and between different host colonies, but also p...
متن کامل